
1

An Autonomous Control System for an
Intra-Vehicular Spacecraft Mobile Monitor Prototype

Gregory A. Dorais, Salvatore D. Desiano1 Yuri Gawdiak, and Keith Nicewarner1

NASA Ames Research Center
 MS 269-2, Moffett Field, CA, 94035, USA

gdorais@arc.nasa.gov, sdesiano@arc.nasa.gov, ygawdiak@hq.nasa.gov, knicewar@arc.nasa.gov

Keywords Artificial Intelligence, Space Autonomy, Space
Robotics, Planning, Diagnosis, International Space Station,

Integrated Vehicle Health Management

Abstract
This paper presents an overview of an ongoing research

and development effort at the NASA Ames Research
Center to create an autonomous control system for an
internal spacecraft autonomous mobile monitor. It primary
functions are to provide crew support and perform intra-
vehicular sensing activities by autonomously navigating
onboard the International Space Station. We describe the
mission roles and high-level functional requirements for
an autonomous mobile monitor. The mobile monitor
prototypes, of which two are operational and one is
actively being designed, physical test facilities used to
perform ground testing, including a 3D micro-gravity test
facility, and simulators are briefly described. We provide
an overview of the autonomy framework and describe each
of its components, including those used for automated
planning, goal-oriented task execution, diagnosis, and
fault recovery. A sample mission test scenario is also
described.

1. Introduction
The Personal Satellite Assistant (PSA) project is a

NASA research and development activity to design an
intelligent, small, free-flying, remote-sensing vehicle [1].
It is designed to autonomously navigating in 3-
dimensions within a pressurized, micro-gravity
environment, diagnosing systems in its environment, and
interacting with people such that it is useful, easily
understood, and easily commanded in a time-efficient
manner. The primary operating environment target is the
International Space Station (ISS), but other environments
include the Space Shuttle and future manned spacecraft,
such as one designed to carry a crew to the Moon or Mars.
The PSA has various environmental sensors as well as
audio/video human-interface devices. It can be remotely
commanded at various levels of autonomy and can be
commanded locally by simple speech commands and
human gestures.

Mission Roles
The two primary mission roles for the PSA are to

improve spacecraft crew productivity and to decrease
mission risk by serving as part of an integrated spacecraft
health management system.

Spacecraft health-management support role—the PSA
will provide mobile monitoring, diagnosis, and
communication capabilities. The PSA is being designed
to

1
 QSS Group, Inc.

supplement the spacecraft’s Environmental Control Life
and Support System (ECLSS) by measuring temperature,
pressure, humidity, and various gas levels (e.g., oxygen,
CO2) and recording a visual log as it traverses the
spacecraft. The PSA will help diagnose and calibrate
spacecraft sensors, temporarily replace faulty
environmental sensors, generate acoustic, temperature, and
gas concentration maps, locate gas and fluid leaks, filter
atmospheric particles, as well as characterize heat sources
with its infrared camera.

Crew productivity role—the PSA will provide several
support capabilities including: remote visual monitoring
and task recording, video and data display, payload &
core system knowledge management, inventory tracking,
just-in-time training, and standard PDA functions
(schedule, notes, activity lists, calculations, etc.). These
capabilities will directly support flight crews in the daily
execution of payload experiment and core system tasks.

To support the flight crews, ground crews, and payload
scientists, the PSA can be used for monitoring and
communication using its audio and video sensors as well
as perform videoconferencing and display a variety data on
its LCD screen. The PSA will allow ground crews and
scientists to be virtually located inside the spacecraft.
Moreover, the PSA's autonomy capabilities will allow
remote users to interact with the crew and spacecraft in a
human-centered way while providing real-time data
collection and communication.

The ISS, for example, is an extremely ambitious
operational environment for the crew (3-6 members) with
tens of thousands of inventory items to track and
hundreds of experiments to manage covering a wide
spectrum of science disciplines. A PSA could be used to
increase the productivity of the ISS by automating or
otherwise reducing the crew time required to perform tasks
as well as by enhancing or enabling science activities that
would otherwise not be performed due to insufficient crew
time.

This paper describes select PSA high-level functional
requirements, prototypes and their test facilities,
autonomy technology components, and a test mission
scenario.

2. Functional Requirements
The following are a few of the higher-level functional

requirements that may be of particular interest.

Requirement 1—create a self-contained portable device
with environmental sensors, computational capabilities to
analyze the sensor data and perform diagnoses, and a
video display. The sensors are to function inside the ISS
and similar operating environments. The high priority
sensors include those that measure local temperature,
atmospheric pressure, humidity, and gas concentrations
including O2 and CO2. Lower priority sensors include

2

visible-light still and motion cameras, thermal imager,
Geiger counter, NDIR spectrometer, electromagnetic
detector, RFID tag detector for inventory management,
microphone, and a directional acoustic detector array for
localizing emissions.

Requirement 2—stamp the sensor data with the time
and a 6-DOF position of the sensors relative to the
environment. The 6 degrees-of-freedom (DOF) correspond
to X, Y, Z translations and yaw, pitch, roll orientations
relative to a global origin. Satisfying the position element
is of this requirement is challenging retrofitting the ISS
with active beacons to create a local GPS system is
strongly discouraged except for special cases. Our current
approach is to develop a system that can do self-
localization using a combination of stereo-cameras to
build depth maps and sense motion by means of optic
flow algorithms and fuse this with data from a 6-DOF
inertial measurement unit (gyros and accelerometers), and
proximity sensors. As necessary, we can mitigate risk by
engineering the environment with passive fiducial marks
as needed.

Requirement 3—“station-keep” on command by
maintaining a fixed position and orientation relative to its
environment. This capability is particularly important
since the system has no “brakes.” Moreover, many tasks
require maintaining a fixed position for a period of time.
Note that the environment, i.e., the ISS, is continually in
motion as it orbits the Earth and performs minor attitude
adjustments.

Requirement 4—navigate to various positions on
command, avoiding static and dynamic obstacles. This
requirement can be viewed as a corollary of requirements 2
and 3. If the system already has the sensors, controllers,
and actuators to determine its absolute position and
maintain it, enabling it to navigate requires no additional
hardware. Allowing the system to navigate to various
positions again increases the flexibility of the system
while decreasing the crew time required to perform a task.
For example, searching for a leak or a measuring gas
concentrations throughout a module can be quite time-
consuming. The task is more efficient if it doesn’t require
a crewmember to be present even if the task takes longer.

Requirement 5—minimize the time required by the
crew to operate the system while enabling crewmembers
to command the system at the level of autonomy they
desire. This requirement is in keeping with the general
principle that crew time is extremely valuable. In some
cases, this means that totally autonomous systems are
preferable to manual systems. However, there are cases
where autonomous systems require more crew time
because the overhead in figuring out how to command the
system to perform a task autonomously is greater than
doing the task manually. Consequentially, the
requirement is essentially for the system to be adjustably
autonomous. If necessary, another system, such as the
environmental life support system can command it to
localize a heat source without requiring any crew
intervention. In another task, a crewmember can command
it to go to a certain location and notify him upon arrival,
at which time the crewmember teleoperates the system as
desired. In order to achieve this requirement, the system
must have mixed-initiative planning, scheduling, and
execution capabilities, and the ability to effectively
communicate with the human operator so the operator

understands what the system is doing and why it is doing
it, and the system can interpret what the operator wants
and can translate it into commands it can execute.

Requirement 6—perform continuous active hybrid
temporal-variable diagnostics on its environment and
equipment in it. We define a diagnostic system here to be
one that determines the sets of likely system states that
are consistent with the observations and the model of the
system. A temporal-variable diagnostic system can use
observations that change over time, e.g., recognize trends.
A hybrid diagnostic system is one that can reason given
both continuous-valued and discrete-valued observations.
Typically, different approaches are used for continuous
and discrete-valued observations, but many systems
require that both be reasoned about simultaneously. An
active diagnostic system is one that determines what
additional observations are needed to disambiguate the
state of the system being diagnosed. For example,
consider a system with a HIGH-TEMPERATURE
warning light that is on. Two possible diagnoses are that
the system is indeed overheating or the temperature sensor
is faulty. By verifying the temperature of the system with
an independent measurement, such as can be provided by
a mobile sensor, we can then determine more accurately
which of these two diagnoses is more likely correct. One
of the uses of this portable sensor device is as part of a
larger Integrated Vehicle Health Management (IVHM)
system so having this diagnostic capability can increase
the likelihood of early detection and accurate diagnosis of
problems without requiring crew time.

Although there are several other requirements, these six
functional requirements effectively constrain the space of
possible solutions. Other notable requirements involve
safety, reliability, and ease-of-use. In particular, a smaller
overall size and longer operation between recharges is
better.

3. PSA Prototypes and Test Facilities
The PSA project is using an iterative, rapid

prototyping approach for the development of the hardware.
We began by developing a 4-fan prototype with a stereo
camera pair that floats on a thin cushion of air over a
granite table. This PSA Model 1 prototype was capable of
navigating in three degrees of freedom (DOF): X, Y, and
yaw. The stereo camera were used to estimate position and
velocities.

PSA Model 2
While the Model 1 was being tested, a 6-DOF Model 2

prototype was developed and is shown in Figure 1.

3

Figure 1 - PSA Model 2

The Model 2 is 12” in diameter (the targeted flight
model diameter of 8”) and capable of position and
velocity estimation and motion in 6-DOF (X, Y, Z, yaw,
pitch, roll) 6-DOF position and velocity estimation is
achieved using multiple stereo-pair cameras (between 1-4
pairs). Propulsion and attitude control 6-DOF are achieved
using 6 fan pairs located in 6 ducts. The Model 2 has a
3.8” diag. LCD located at the center of its front lower
hemisphere. The LCD can be used to display data
generated locally as well as data received via its wireless
network, e.g., text terminals, images, schematics, videos,
and support teleconferencing. The location of these and
additional components are depicted in Figure 2.

Figure 2 - PSA Model 2 Annotated Drawing

Micro-gravity Test Facility
To test the Model 2 on Earth, a micro-gravity test

facility was developed. The facility is roughly 36’ long,
13’ wide, and 8’ high. This size is sufficient to contain
the interior volume of any one ISS module. The facility
consists of a 3-DOF (X,Y,Z) bridge-crane-like mechanism
that supports a passive gimble that mounts the PSA,
which permits free spinning in yaw and pitch. Currently,
the facility supports 5-DOF motion (X, Y, Z, yaw, pitch).
A gimbal, which permits yaw, pitch, and roll motion,
will be mounted in the facility enabling 6-DOF motion in
the near future. The bridge moves up and down the length
of the facility. The trolley moves along the bridge
permitting the trolley to move to any (X,Y) coordinate in
the facility. A crane on the trolley raises and lowers the
gimbal-mounted PSA. attached to it. The object to be
tested is mounted in the gimbal and balanced so that it
freely spins and doesn’t “wobble.” The micro-gravity test

facility can be operated in the following four modes. The
PSA Model 2 is shown in the facility in figure 3.

Figure 3 - PSA Model 2 in Micro-gravity Test Facility

The facility can be operated in several modes. The most
significant mode enables us to simulate micro-gravity.
Sensors located on the trolley and gimbal sense
translation forces (X,Y,Z) acting on or generated by the
gimbal payload. These sensor signals are interpreted by
the crane motors as force commands and move the
payload accordingly. The Z-axis signal is offset to cancel
the force of gravity. The result is that an impulse force
acting on the payload will cause it to “float” within the
facility at a constant velocity. When the PSA Model 2 is
the payload, its fan power is sufficient to propel it
throughout the facility as if it was in a micro-gravity
environment.

PSA Model 3and beyond
While testing continues on the Model 2, the

preliminary design of the Model 3 is nearing completion.
One notable difference between the Models 2 and 3 is the
use of two blowers and four reactions wheels for
propulsion and attitude control in the Model 3. The two
counter-rotating blowers, located at the top and bottom of
the sphere, exhaust through actuated vents to propel the
PSA and the reaction wheels control its orientation.
Although it is possible to control yaw, pitch, and roll
with only three reaction wheels, a fourth reaction wheel
enables momentum to be shifted among the reaction
wheels. Another difference in the Model 3 is that it will
include additional environmental sensors, including a
thermal imager. Though when completed the Model 3
will be oversized and not space qualified, it otherwise will
have all of the capabilities planned for the flight model.

The Model 3 design is a point design midway between
the Model 2 and the 8” dia. Model 4. A mockup of the
Model 4 is shown in Figure 4. The 12” Model 3 will be
similar in appearance and functionality to the Model 4,
but will avoid the development of custom integrated
circuits and other components required for the Model 4.

Figure 4 - PSA Model 4 Concept Model Mockup

Simulators
A variety of software simulators have served a crucial

role in the software development process. They permit
unit testing of components being developed as well as

Speaker

Gimbal
Mount

Microphone

IR Sensors

Temp &
Humidity
Sensor

LED Spot
Light

Vent

Stereo
Camera

Stereo
Camera

Video
Display

Propulsion
Fan Ducts

Speaker

Gimbal
Mount

Microphone

IR Sensors

Temp &
Humidity
Sensor

LED Spot
Light

Vent

Stereo
Camera

Stereo
Camera

Video
Display

Propulsion
Fan Ducts

4

system integration tests when software changes are made.
Our primary simulator is configurable so that it can
replace various hardware and software components as
needed for testing.

Figure 5 - 3D simulator screenshot of PSA in ISS
with crewmember

We have recently integrated our PSA-specific simulator
with a general-purpose 3D simulator, which provides 3D-
rendered graphics and object dynamics. The current
version is a synthesis of the graphics provided by the SGI
Open Inventor™ 3D toolkit built on top of Open GL®
and the CMLabs Vortex rigid-body physics simulator. By
providing VRML and collision models of the ISS and
objects within it including a PSA, we can navigate the
PSA throughout the ISS and interact with simulated
crewmembers, payloads, and objects that behave with
realistic dynamics. The simulator is capable of supporting
the simultaneous operation of multiple PSAs. In the
Figure 5 simulator screenshot, a PSA is shown with a
crewmember in the ISS U.S. Lab “Destiny” module.

In addition, this simulator has a scripting language that
can be used to control the simulation. We have added an
environment simulator to it to simulate fires, pressure
leaks, and other faults to test the diagnostic capabilities of
the PSA and its autonomous control system. We use the
same autonomy software, often executing similar
scenarios, to control the physical PSA prototypes in the
physical simulators. These scenarios are helpful in testing
the fidelity of the software simulators as well as the PSA
hardware and software.

4. Autonomy Framework
An autonomy framework designed to address the

previously discussed operational requirements has been
developed and is depicted in Figure 6. The same software
is used to command the PSA Model 1 and Model 2 as
well as the PSA in simulation. Care was taken to design
and implement this framework so that it is applicable to a
wide range of free-flying vehicles.

The user can issue commands to the PSA through the
Crew GUI. Also, the user can issue verbal commands to
and receive spoken notifications generated by the PSA via
a headset. Other external systems, including other PSA’s,
can directly and simultaneously issue commands to the
PSA, which will attempt to resolve any conflicts. Finally,
the PSA itself can generate commands in keeping with its
high-level goals and periodic task schedule.

The PSA autonomy framework is comprised of a
number of control elements, which are represented as
boxes in Figure 6. The current implementation is
distributed over three processors, as indicated by the
dashed boxes, which are connected by wireless Ethernet.
Each of these three subsystems and the control elements it
contains is briefly discussed below. Note that the
framework design and many of its elements draw their
heritage from the model-based, goal-achieving,
temporally-flexible NASA “Remote Agent” autonomy
software flight-validated on the Deep Space One spacecraft
in 1999 [2].

Onboard Control System Elements
The onboard control system is responsible for sensing,

sensor analysis (e.g., object and fault recognition), state
estimation (e.g., position estimation), hardware actuation
(e.g., motor currents), and real-time reactive control (e.g.,
obstacle avoidance), generally with sub-second latency.
This system is designed to enable local operation of the
PSA even when communication with the off-board system
is lost, which may occur during a flight emergency.

Local Path Planner—generates a trajectory between
two waypoints that takes into account locally sensed
obstacles When given a third waypoint, the trajectory
passes through the second waypoint. The local path
planner performs limited trajectory repair in case of a path
plan failure, e.g., blocked path.

High-level controllers—translates the trajectory into a
sequence of 6-DOF (position, velocity, and acceleration)
setpoints for the low-level controllers.

Low-level controllers—translates the setpoints into
motor force commands to achieve the specified PSA
motion.

PSA Hardware—the sensors and actuators with their
associated drivers. These include fan motor controllers,
stereo cameras, environment sensors, proximity sensors,
and an LCD.

Monitors—signal processing loops that abstract the
data generated by the sensors. They run from being as
simple as indicating that a proximity sensor has triggered
to continually calculating 6-DOF positions and velocities
by fusing the stereo camera, 6-DOF inertial sensors, and
proximity sensors.

Communication Manager—responsible for managing
message traffic and executing appropriate message
handlers. Serves same role in both off-board systems.

5

Off-board Autonomy System
The off-board autonomy system is responsible for high-

level autonomous control including inter-agent
communication and coordination (including humans),
goal management, decomposing high-level tasks
(planning) into commands that can be executed by the
onboard control system, e.g., waypoint commands,
constraining task times (scheduling), command
sequencing (plan execution), and reasoning about sensor
data provided by the onboard control system, e.g., for
diagnosis, and for plan repair, e.g., onboard control
system is unable to achieve a waypoint. Architecturally,
this system could be integrated onboard the PSA. It is
off-board to permit increased computational power that is
not constrained by onboard size, power, and
communication constraints. The off-board processor also
can be conveniently located in the PSA docking bay.

Declarative Models—contains the library of constraints
used by the Plan Database that define a set of coordinated
state machines. A constraint may simply specify that Task
A must precede Task B by at least 10 seconds but not
more than 20 seconds. The constraint may also
functionally relate the parameters of tasks A and B as well
as specify preconditions as to when it applies.

Plan Database—contains the plan being executed and
is responsible for automated sub-goaling of tasks, i.e.,
determining the set of sub-tasks required to achieve a task,
and for maintaining flexible plans, i.e., the propagation of
valid task variable domains that are minimally restricted
without violating a constraint. This has been implemented
using the EUROPA plan database developed at the NASA
Ames Research Center. EUROPA is a derivative of the
model-based, temporally-flexible Remote Agent Plan

Database described in [3], an earlier version of which was
demonstrated on Deep Space One [2]. The plan database
represents a temporal, constraint-based network of tokens
that defines the past, the present, and flexibly-defined
future states and actions of the system. Each token
represents the “state” of a state variable for a period of
time and the tasks that achieve or determine this state.
Each token defines a start, end, and duration temporal
variable, each with an upper and lower bound, as well as
the procedure (predicate and arguments) invoked when the
token is “executed.” The plan database supports multiple
timelines with constraints on and between tokens. If none
of the constraints are violated for a given instantiation of
the plan database, the database is defined to be consistent.

Deliberative Planner—schedules outstanding tasks, and
the related sub-tasks generated by the plan database, as
well as makes decisions regarding constraining the
domains of task variables to achieve specified goals
during a specified period of time. This element is
implemented by a variation of the Remote Agent Model-
based Planner/Scheduler described in [3] and as specified
by the Intelligent Distributed Execution Agent (IDEA)
architecture [4]. More specifically, the Deliberative
Planner (DP) is responsible for generating a consistent,
flexible plan in the plan database given a start and end
horizon time bound, an initial state of the timelines at the
start time, and a set of goals. A flexible plan is loosely
defined as a set of timelines, each consisting of tokens on
each timeline, token order constraints that prevent
overlapping tokens on the same timeline, and token
procedure variable constraints. Plan flexibility is
characterized by the set of decisions yet to be made that
result in a consistent plan. A plan identification function
is used to determine which of the outstanding decisions

High-level
Controllers

Local Path
Planner

Low-level
Controllers

PSA
Hardware
(w/sensors
& display)

Environment

Monitors
(w/vision
system)

Crew GUI

physics

signals

Onboard
Control
System
(PSA)

user(s)
Off-board

User Interface
System
(Laptop)

Teleoperation
Manager

wireless
headset

Comm.
Manager

Plan
Runner

Reactive
Planner

Plan
Database

Deliberative
Planner

Declarative
Models

Goal/Dialogue
Manager

e.g.,
trajectory

Off-board
Autonomy System

(Server)
Comm.

Manager

Other Systems

Comm. Manager

System

Comm. Manager

ExpertExpert
Plan Experts

e.g.,Path Estimator

Voice Recognition/
Synthesis

Path
Planner

Environment
Map

State
Estimator

wireless
Ethernet

e.g., commands,
telemetry

e.g., “measure
temperature at rack 5”

e.g., waypoint

e.g., direction
vector

e.g., velocities

e.g., motor
currents

e.g.,
location

High-level
Controllers

Local Path
Planner

Low-level
Controllers

PSA
Hardware
(w/sensors
& display)

Environment

Monitors
(w/vision
system)

Crew GUI

physics

signals

Onboard
Control
System
(PSA)

user(s)
Off-board

User Interface
System
(Laptop)

Teleoperation
Manager

wireless
headset

Comm.
Manager

Plan
Runner

Reactive
Planner

Plan
Database

Deliberative
Planner

Declarative
Models

Goal/Dialogue
Manager

e.g.,
trajectory

Off-board
Autonomy System

(Server)
Comm.

Manager

Other Systems

Comm. Manager

System

Comm. Manager

ExpertExpert
Plan Experts

e.g.,Path Estimator

Voice Recognition/
Synthesis

Path
Planner

Environment
Map

State
Estimator

wireless
Ethernet

e.g., commands,
telemetry

e.g., “measure
temperature at rack 5”

e.g., waypoint

e.g., direction
vector

e.g., velocities

e.g., motor
currents

e.g.,
location

Figure 6 - PSA Autonomy Framework

6

must be made in order to have a valid plan. The search
process and decision selection priorities are determined in
part by user-defined heuristics. Complex plans can require
considerable computation time. The proper set of
heuristics can dramatically reduce the time required. The
DP is called to initialize the plan database and also is
called during plan execution as specified by the plan being
executed. It is typically called to plan for a period of
significant duration sufficiently in the future such that the
DP will complete prior to the start time of this period,
but not so far in the future that the initial state at the
future start horizon is not known with high confidence.

Reactive Planner—responsible for insuring that the
Plan Database is in a state such that the tasks to be
executed at a specified time are unambiguous. It has been
implemented as described in [4]. In many respects, as
implemented the Reactive Planner (RP) is very similar to
the DP described above, although that not need be the
case. The salient differences between the two planners are:
• the RP reasons over a shorter, more immediate time

horizon, typically ending just after the current execution
time

• the RP plan identification function is more restrictive so
decisions that were postponed by the DP must now be
made; the time allocated for planning is relatively very
short, typically less than a few seconds, and cannot be
exceeded without a fault

• in the event of a plan deliberation or execution failure,
the RP repairs the plan locally or if necessary generates
a standby plan to safe the PSA and calling the DP. Plan
repair may be necessary for several reasons including
tasks completing too late or too early, task return state
variables posted to the Plan Database make it
inconsistent, and new tasks have been added to the Plan
Database for immediate execution that cause a conflict.
Plan Experts—computational procedures, called by a

planner, that return information used by the planner to
make planning decisions, typically regarding token
variable values. For example, a route planner expert is
called by either the deliberative or reactive planner to
determine the time, route, and energy required to move
between two points in the environment or to cover a
certain space. The route planner expert has access to a
global map that can be updated with sensed obstacles. A
route plan request is typically made by the deliberative
planner as part of developing the initial plan, but may also
be called by the reactive planner to develop an alternate
route if necessary, e.g., the route is blocked or there is
insufficient energy to complete the current plan. In
addition, a user may initiate a request to answer a
hypothetical question about a particular goal.

Plan Runner (command sequencer)—executes tokens in
the plan database at the appropriate time. Executing a
token involves calling the procedure with its arguments
defined by the token, updating the plan database with the
token return values when the procedure terminates,
constraining the plan database so that planners only have
limited ability to change the past, and calling the Reactive
Planner, as described above, as needed to update the plan
database. The plan runner implemented is described in
more depth in [4].

State Estimator—abstracts and infers a consistent set of
state variables with respect to a system model given the

discrete and continuous sensor data provided over time.
Some of these state variables, such as the health of a
sensor, may not be directly measurable. To accomplish
this we are using the model-based L2 state estimation
system, which is based on algorithms described in [5] and
is an extension of the Livingstone system that was a
component of the Remote Agent [2]. In certain instances
it may be necessary to infer that a sensor is not healthy in
order to achieve a set of state values that are consistent
with the system model. In other cases it may be necessary
to collect additional data to disambiguate between
conflicting possible inferences for given sensor data.

Goal/Dialogue Manager—acts as an arbiter between the
autonomous control system and other agents, including
people. It retains state regarding its interaction with the
other agents, e.g., recalls the subject of a previous
sentence spoken by the user. As an arbiter, this element
serves two roles: a goal manager and a dialogue manager.
The goal manager essentially acts as a meta-planner for the
deliberative planner. As stated above, the deliberative
planner requires a start and end horizon time bounds, an
initial state of the timelines at the start time, and a set of
goals. The goal manager interacts with the user to
determine this information. This may include negotiation
of goals when all goals are not achievable or supporting
mixed-initiative planning for hypothetical situations. The
dialogue manager is responsible for acting as an intelligent
interface with other agents. When interacting with people,
it can converse with a person speaking a restricted natural
language, responding as appropriate to spoken commands
and queries. It inserts, changes or removes tokens in the
Plan Database or responds to user queries by querying the
planner experts and Plan Database. Currently, the
integrated Dialogue Manager is simplistic. A more
sophisticated dialogue manager tested on a stand-alone
simulator is presented in [6]. The integration of such a
dialogue manager remains as future work.
Off-board User Interface System

The user-interface system enables the user to interact
with the PSA by commanding and displaying
information. It provides situational awareness, sensor-data
views, plan views, and commanding capabilities. This
includes interfaces for interactively creating and modifying
the plan as well as teleoperation. Our intent is for this
interface to support operation at various autonomy levels
that can be dynamically changed and range from
teleoperation to high-level autonomous control.

Voice Recognition and Synthesis—provides speech-to-
text and text-to-speech conversions. The voice recognition
subsystem essentially converts an audio signal into a
parsed text stream. Conversely, the voice synthesis
subsystem essentially converts text commanded by the
Dialogue Manager or the Plan Runner into speech via the
user headset or remote speakers. We use commercial
products to accomplish these tasks and plan to upgrade
them as improvements are made.

Teleoperation Manager—executes supported user
commands and coverts GUI-generated commands into
commands executable by the Autonomy system, e.g.,
plan editing. Also, it supports two force-feedback 3-DOF
joysticks or one 6-DOF joystick for teleoperation in
position, velocity, or acceleration modes.

Crew GUI—displays the sensor data, renders the PSA

7

in a 3D model of its environment, displays plans,
provides plan editors for both PSA task and path plans,
and provides for direct commanding of the PSA. Included
in the displayed sensor data is the real-time video stream
generated by the PSA. In addition, by using a camera
mounted on the Crew GUI display, the Crew GUI
supports teleconferencing.

5. Sample Mission Test Scenario
In order to measure the system capabilities with respect

to the operational requirements and to identify the
challenging problems, several scenarios have been
developed. These scenarios are designed to execute in
simulation as well as with the physical prototypes in the
test facilities. These scenarios perform a valuable role in
measuring our current capability levels and are also useful
for regression testing. As the capabilities of the PSA
including its autonomous control system improve, the
complexity scenarios are increased effectively raising the
performance bar.

In this section we discuss a scenario, summarized in
Figure 7, in which the PSA, an autonomous
Environmental Control Life Support System agent,
ECLSS, and a crewmember participate in the diagnosis of
and recovery from an ISS module fault. In this scenario,
ECLSS is autonomously controlled by a high-level
autonomous system similar to the one used by the PSA as
shown in Figure 6 (the main difference is that ECLSS
does not use a path planner). The scenario has two
variations depending on the cause of the initially sensed
anomaly. This scenario is used to demonstrate:
• Integrated Vehicle Health Management
• Cooperative multi-agent planning and execution
• Generation and execution of a near-optimal 6-DOF route

plans
• Stereo vision-based 6-DOF localization and map

registration
The scenario begins with the PSA station keeping at its

dock when a fixed temperature sensor at rack 5, locker 1 in
the ISS U.S. Lab module signals a high temperature to

the ECLSS. The ECLSS attempts to diagnose the
problem and is not able to determine whether the sensor is
defective or if the station system is actually overheating
without additional information. In our case, we have
specified that each case is equally likely. So in order to
disambiguate the system state, ECLSS commands the
PSA agent to go to the fixed sensor location and verify the
temperature at that location by sending the PSA agent a
sense-at-location goal. The PSA agent then reactively
deliberates (i.e., the reactive planner calls the deliberative
planner in response to the new goal). The deliberative
planner decomposes the goal into a move-to subgoal
followed by a subgoal to maintain position while the
temperature is sensed. The move-to subgoal then
decomposes into a path-planning subgoal followed by an
execute path subgoal. All of these goals are flexibly
scheduled. When the path-planning goal is executed, a path
from the current location to the desired location is
generated, where a path consists of a sequence of
waypoints that avoids known obstacles and no-fly zones.
When the path is scheduled to execute, the PSA agent
sends it to the PSA subsystem, which executes each
waypoint. As needed, the trajectory between waypoints is
dynamically changed to avoid obstacles detected en route.
When it arrives at the destination, the PSA subsystem
confirms that the path was completed, or in a failure case
it cannot be achieved, with the PSA agent. PSA agent
then commands the PSA subsystem to station keep for a
period while the PSA measures the temperature. After that
period, the top-level PSA agent sense-at-location goal
completes by returning the sensed temperature to ECLSS.
ECLSS then compares the two sensor readings. The two
cases where they agree or disagree are listed below. The
preceding activity is summarized by steps 1-5 in Figure 7.

If the PSA and ECLSS temperature sensors disagree,
the ECLSS state estimator infers that the fixed
temperature sensor has failed and requests that a
crewmember repair it by sending a message to the ECLSS
operator user interface requesting the repair and waits for
confirmation that the crewmember has repaired the sensor.
When the crewmember confirms, the fixed sensor value

Step Agent Scenario Step Description
1 ECLSS Detects a high heat signal from a fixed ISS node sensor. Fixed sensor health or heat source unknown.
2 ECLSS Commands PSA to verify the temperature at that location
3 PSA Generates plan upon receipt of the command to go to the fixed sensor location and measure temperature
4 PSA Starts executing plan
5 PSA Moves to fixed sensor and begins collecting temperature data and sending it to ECLSS

Variation A: Fixed rack sensor failed high, rack lockers nominal
6a ECLSS Determines fixed sensor is faulty and uses PSA sensor as temporary sensor.
7a ECLSS Requests crewmember to repair sensor
8a Crewmember Repairs fixed sensor and notifies ECLSS
9a ECLSS Requests PSA to measure temperature to validate fixed sensor, which signals actual temperature
10a ECLSS ECLSS infers problem resolved and commands PSA to return to docking bay
11a PSA Returns to docking locker recharge

Variation B: Fixed rack sensor healthy, one rack locker overheating
6b ECLSS ECLISS determines fixed sensor is accurate.
7b ECLSS Commands PSA to locate heat source.
8b PSA Searches region for heat source and determines maximum heat is at location of locker X.
9b PSA Sends locker location and its temperature to ECLSS.
10b ECLSS Determines locker can be powered down and turns off power to locker. Temperature declines.
11b ECLSS Requests PSA to verify temperature has declined
12b PSA Sends locker temperature to ECLSS
13b ECLSS Releases PSA to perform previously scheduled tasks
14b PSA Returns to docking locker to recharge

Figure 7 – Sample PSA Test Mission Scenario

8

returns to nominal. Meanwhile, ECLSS tells PSA to
measure the temperature again at the same location and
compares the return value to the value read from the fixed
sensor. Since they now agree, the ECLSS state estimator
infers that the fixed sensor is healthy and the PSA is
commanded to its dock completing the scenario (steps 6a-
11a).

However, if the PSA and ECLSS temperature sensors
agree, then the ECLSS state estimator infers that a nearby
locker is overheating, but which one is unknown. ECLSS
gives a goal to the PSA agent to direct it to locate the
source of the heat. The PSA agent decomposes this goal
to send a command to the PSA subsystem that causes it to
execute its heat source seeking behavior. This behavior
has the PSA first spin fully around, scanning the
environment with its thermal imager. Once the scan is
complete, the PSA points to the largest magnitude heat
source and moves toward it. When the PSA gets as close
as it can to the heat source, the PSA agent goal returns the
location and temperature measurement to ECLSS. In our
case, the heat source is actually in a neighboring rack: rack
4, locker 3, which the ECLSS state estimator infers.
ECLSS then commands the system operating in the locker
to power-off, which reduces the (simulated) heat in the
area. The ECLSS fixed sensor then reads a nominal
temperature. ECLSS sends the PSA agent a goal to
measure the temperature again to verify the temperature is
nominal. The PSA measures the temperature and returns
the temperature to ECLSS. ECLSS infers that the locker
temperature is nominal and releases the PSA from further
requests. The PSA then returns to its dock completing the
scenario (steps 6b-14b).

6. Future Work
Future research and development efforts will focus on

system-level active hybrid diagnosis, fleet operations
(several PSAs working together to handle environmental
problems) as well as autonomous operations with
spacecraft command and control systems (instead of
human commanding/teleoperating). Long-term functional
upgrades may include adding effectors, e.g., arms, capable
of control panel operation, payload maintenance, re-
supply, and repair. Consider a mission where a spacecraft
is in orbit unoccupied. A larger, 4-armed PSA could be
used to monitor and maintain the flight worthiness of the
spacecraft and reduce mission risk.

7. Summary
We presented the ongoing research and development

effort to design the autonomous control software for an
internal spacecraft autonomous mobile monitor, which is
also applicable to a wide range of free-flying vehicles. We
discussed the high-level functional requirements of the
project followed by a description of the PSA prototypes of
increasing complexity and fidelity, as well as the micro-
gravity test facility, which allows us to fly the PSA
prototypes on the ground as if they were onboard the ISS.
The autonomy framework for intelligent flight vehicle
control being developed and tested as part of this project
was then presented and its components detailed. A sample
mission scenario being used to test the prototypes and the
autonomous control system was also outlined. We
concluded with a brief discussion of the future work.

8. Acknowledgments
We gratefully acknowledge the contributions of the

many talented people on this project including Kurt
Konolige, Nicola Muscettola, Charles Neveu, Eric
Poblenz, and Adam Sweet. In addition, we acknowledge
the support provided by the NASA Cross-Enterprise
Technology Development Program, the Computing,
Information, and Technology Program, and the
Engineering Complex Systems Program.

9. References
[1] Gregory A. Dorais and Yuri Gawdiak, “The Personal

Satellite Assistant: an internal spacecraft mobile monitor.”
Proceedings of the IEEE Aerospace Conference, Big Sky,
MT, 2003.

[2] Douglas Bernard, et al., “Final report on the Remote
Agent experiment.” Proceedings of the New Millennium
Program DS-1 Technology Validation Symposium,
Pasadena, CA, February 8-9, 2000.

[3] Ari K. Jonsson, et al., “Planning in interplanetary
space: theory and practice.” Proceedings of the 5th Artificial
Intelligence Planning and Scheduling Conference,
Brekenridge, CO, 2000.

[4] Nicola Muscettola et el., “A unified approach to
model-based planning and execution.” Proceedings of the
Sixth International Conference on Intelligent Autonomous
Systems, Venice, Italy, 2000.

[5] James Kurien and P. Pandurang Nayak, “Back to the
future with consistency-based trajectory tracking.”
Proceedings of the 17th National Conference on Artificial
Intelligence, Austin, TX, 2000.

[6] Manny Rayner, Beth Ann Hockey, and Frankie
James, “A compact architecture for dialogue management
based on scripts and meta-outputs.” Proceedings of
Applied Natural Language Processing (ANLP), 2000.

